If it's not what You are looking for type in the equation solver your own equation and let us solve it.
4q^2-8q=31
We move all terms to the left:
4q^2-8q-(31)=0
a = 4; b = -8; c = -31;
Δ = b2-4ac
Δ = -82-4·4·(-31)
Δ = 560
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$q_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$q_{2}=\frac{-b+\sqrt{\Delta}}{2a}$
The end solution:
$\sqrt{\Delta}=\sqrt{560}=\sqrt{16*35}=\sqrt{16}*\sqrt{35}=4\sqrt{35}$$q_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(-8)-4\sqrt{35}}{2*4}=\frac{8-4\sqrt{35}}{8} $$q_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(-8)+4\sqrt{35}}{2*4}=\frac{8+4\sqrt{35}}{8} $
| 287-x=99 | | -6(-6x+4)-2(x+5)=2(5x-17)+5x | | 2x^2-18x-184=0 | | 275=220-v | | (1x÷8)-4=1 | | 2x^-18x-184=0 | | w÷4-21= | | x*0.32=10000 | | x*0.32154=10000 | | (7x)÷4=4 | | -5x+8=x+44 | | w÷4-21=(-3) | | 5=3l | | w÷4-21=(3) | | 2y^2+2y-y24=0 | | 7x÷2=4 | | 15(10x+4)-2(25x)=5(20x+10)-10 | | 5t-9=2t+3;t | | (2x+5)÷2=4 | | 8^3x+5=(1/4)^x-2 | | -11x-20=-91 | | -4x+6=7x-49 | | -82=4x-2(-2x+17) | | -12=8m+11m | | 10^x=2.2 | | 34n+24=-6n-(-24) | | -7(5x-1)+10=10(4x+2)-3 | | 12-(4h)=6 | | -7(6x-15)=-42x-35 | | 6a^2+7a+1=0 | | 19/6x=8 | | 2.4=x/(2.00-x |